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Answer all questions.

Answer each question in the space provided for that question.

o0
—1
1 (a) Explain why J x_x dx is an improper integral.
1 €
[1 mark]

o0
—1
(b) Evaluate the improper integral J xe—x dx, showing the limiting process used.

1
[4 marks]

e | Answer space for question 1

REFERENCE

02

Jun18/MFP3



Do not write
3 outside the
box

auestion | Answer space for question 1

REFERENCE

Turn over »

03

Jun18/MFP3



It is given that y(x) satisfies the differential equation

dy
— = f(x,
3 @)
1
where f(x, y) =x+ Elogz(y +7)
and y(2) =1

Use the improved Euler formula

1
Y1 =V + E (kl + k2)
where k; = hf(x,, y,) and k, = hf(x, + h, y. + k;) and h = 0.3, to obtain an

approximation to y(2.3), giving your answer to four significant figures.
[5 marks]
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Find the general solution of the differential equation

d>y dy
dx 2

7 62 4 10y = 34x — 20x>
& y

[7 marks]
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4 Show that, for some value of k,
lim [3—V9—kx*| 1
x>0 | 7x6 4 8x4 32

and state this value of %.

[4 marks]
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(a)

(b)

The polar equation of an ellipse C is

5

= 0<0<K2
: 34 2sin0’ T

By finding a Cartesian equation of the ellipse C in a suitable form, state the Cartesian
equations of the tangents to C that are parallel to the coordinate axes.

[5 marks]
X2 2
Given that the area of the region bounded by the ellipse R =1 is mab, deduce
a
27 1
the exact value of J ——— df.
0o (3+2sin0)
[4 marks]
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(a)

(b)

A second order differential equation is given by
d2

d T
é—k(cotx—ktanx)d—i:ycotzx, O<x<§

Show that the substitution
dy
u=-—-+4ycotx
dr y

transforms the second order differential equation into

%+utanx—0
" =

[3 marks]

d T
Hence, given that y = 0 and ay = /3 when x = s solve the second order

differential equation to find an expression for y in terms of sin.x.

[9 marks]
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7 (a) Find the general solution of the differential equation

d

d2y
—+4
dx

o + 4y = 4sin2x + 8 cos 2x

[6 marks]
(b) It is given that y = f(x) is the solution of the differential equation

d?y dy )
—— 4+ 4=+ 4y =4sin2x + 8 cos2x
a2 a Y

such that the first two non-zero terms in the Maclaurin’s series, in ascending powers
1 L
of x, of f(x) are 7 + kx?. Find the value of f(g) , giving your answer in an exact
form.
[4 marks]
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8 The diagram shows the sketch of a curve C;.
0 Initial line
. : 2 e i
The polar equation of the curve C, is r = 4cos~ 0, —3 <0< 5

The curve C, has polar equation » =1+tan0, 0 <0 < g

(a) Prove that the curves C; and C, intersect at a single point P whose distance from the
pole O is 2.
[5 marks]
(b) The curve C, meets the initial line at the point 4. Find the area of the region bounded
by the line segment 4P and the curve C,, giving your answer in an exact form.
[8 marks]
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9 (a)

(b)

Find the first three non-zero terms in the expansion of

In(1+y)—In(1—y)
in ascending powers of y and state the range of values of y for which the expansion

is valid.
[3 marks]

Use the identity 1 + x> = (1 +x)(1 —x +x?) to find the coefficient of x =3, where r
is a positive integer, in the expansion of

1 —x+x?
Inf ———
1 +x+x2
in ascending powers of x. Give your answer in its simplest form.
[7 marks]
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Answer space for question 9

END OF QUESTIONS
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